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Effects of the reduced air-sea
drag coefficient in high winds
on the rapid intensification of
tropical cyclones and
bimodality of the lifetime
maximum intensity
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The air-sea drag coefficient (Cd) is closely related to tropical cyclone (TC)

intensification. Several recent studies suggested that the Cd decreases in winds

greater than 33 m s−1. The effects of Cd reduction in high winds on TC intensity,

especially rapid intensification (RI) and the lifetime maximum intensity (LMI)

distribution, were investigated by analyzing the wind-dependent Cd-based

ocean vertical mixing and the energy budget. In addition, to consider the

uncertainty of the Cd in extreme winds (above 50 m s−1), three types of Cd

fitting that decrease after 33 m s−1, which show different trends after 50 m s−1

(increase, flat, and decrease), were adopted. The results were then compared

with those for the control fitting (saturated after 33 m s−1) and show that the

reduced Cd in high winds drives an increase in net energy by reducing frictional

dissipation and suppressing sea surface cooling. This extra energy prevents the

TC from achieving a steady-state, causing the bimodality of simulated

maximum potential intensity. The observed steady-state probability

(intensification rate and RI probability) in the Cd reduced wind range were

significantly lower (higher) than in the others. These results suggest that Cd

reduction might potentially induce the RI and LMI bimodality.

KEYWORDS

rapid intensification of the tropical cyclone, the drag coefficient, the tropical cyclone-
ocean interaction, the tropical cyclone lifetime maximum intensity, the tropical
cyclone-induced vertical ocean mixing
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1 Introduction

The intensity of tropical cyclones (TCs) is sensitive to the

fluxes of enthalpy and momentum in the air-sea interface in the

high wind core of the storm (Ooyama, 1969; Rosenthal, 1971;

Emanuel, 1986; Emanuel, 1995; Emanuel, 2003). The accurate

parameterization of the air-sea exchange process is crucial to

understanding the mechanisms controlling the evolution of TCs

(Emanuel, 2003). Several studies have examined the air-sea drag

coefficient (Cd) parameterization under TC winds. Recent

studies showed that Cd decreases after saturation at

approximately 33 m s−1 in open-ocean TC conditions (Powell

et al., 2003; Bye & Jenkins, 2006; Jarosz et al., 2007; Holthuijsen

et al., 2012; Soloviev et al., 2014; Zou et al., 2018; Donelan, 2018;

Golbraikh & Shtemler, 2020), however, few studies investigated

the drag-reduction (DR) effects on TC intensity.

Soloviev et al. (2014) argued that the Cd would decrease with

wind speeds of 35–60 m s−1 and increase in extreme winds

greater than 60 m s−1, based on two-phase parameterization and

observations of previous studies. They suggested that the

minima of Cd at 60 m s−1 might explain the rapid

intensification (RI), which is a critical factor in the bimodal
Frontiers in Marine Science 02
distribution of lifetime maximum intensity (LMI; Figure 1; see

Lee et al., 2016). Soloviev et al. (2017) again showed through case

analysis that DR induces RI and recently suggested that an

increase in Cd in extreme wind speed is the leading cause of the

rapid weakening of Category 5 TCs. Donelan (2018) analyzed

the DR-based theoretical maximum potential intensity (MPI;

Emanuel, 1988; Emanuel, 1995) at several fixed sea surface

temperatures (SSTs) and compared the results with the

empirical MPI proposed by DeMaria and Kaplan (1994).

Donelan found that the DR is a critical factor in the RI, which

is a characteristic of the climatology of Atlantic hurricanes. To

explain the reason for RI and the bimodality of LMI, however,

these studies focused on only the reduction in frictional

dissipation.

The MPI is widely used to estimate TC maximum surface

wind speed for a given atmospheric thermal environment and

SST (Emanuel, 1988; Emanuel, 1995). However, TCs gain the

energy needed to evolve from a TC-induced well-mixed ocean.

Lin et al. (2013) suggested that TC intensity has a stronger

relationship with depth-averaged temperatures (DAT; Price,

2009) than with pre-storm SSTs. They revised the MPI using

DATs instead of SSTs to reduce the positive bias of the
A B
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C

FIGURE 1

Distribution of tropical cyclone lifetime maximum intensity in 1982–2020: (A) Global, (B) North Atlantic, (C) Western Pacific, (D) Eastern Pacific,
(E) North Indian Ocean, and (F) Southern Hemisphere. The blue bars show the raw data binned into 2.6 m s−1 bins. The solid black lines indicate
the smoothed probability density functions with a window width of 10.3 m s−1. The number of samples is indicated in parentheses. Only samples
from 2001–2017 with a distance of 259 km (global mean of the radius of at least 17.5 m s−1 winds + one standard deviation from land) were
analyzed to exclude cases affected by topography. Short-lived tropical cyclones (two days or less at tropical storm-force intensity) were
excluded to avoid data heterogeneity (Landsea et al., 2010).
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maximum intensity prediction. The DAT-based MPI is

frequently used to predict TC intensity and RI (Balaguru et al.,

2015; Gao et al., 2016; Balaguru et al., 2018; Kim et al., 2018; Lee

et al., 2019). Inspired by previous studies (Lin et al., 2013;

Soloviev et al., 2014; Soloviev et al., 2017; Donelan, 2018), Lee

et al. (2019) suggested the net energy gain rate (NGR) index,

which is the difference between DAT-based energy generation

and wind-dependent Cd-based frictional dissipation. The NGR

significantly improved prediction accuracy in the short forecast

lead times. In addition, they found that the effect of DAT and

wind-dependent Cd on the intensity prediction significantly

contributed to improvements in accuracy.

The TC-induced sea surface cooling, which plays a critical

role in TC evolution, is determined mainly by the upper-ocean

thermal structure, wind stress, and translation speed (Shay et al.,

2000; Shay et al., 2000; Emanuel, 2003; Pun et al., 2007; Wada &

Usui, 2007; Lin et al., 2008; Goni et al., 2009; Kaplan et al., 2010).

Because wind stress depends on the Cd, changes in the Cd may

also affect TC-induced sea surface cooling. Therefore, to

understand the effect of DR on TC intensification, it is first

necessary to quantitatively investigate the role of DR in TC-

induced sea surface cooling.

In this study, we investigate the effects of DR on RI and the

distribution of LMI by using the NGR. Additionally, we analyzed

its impact on sea surface cooling, which was not addressed in

previous studies. The data and methodology are described in

Section 2. Section 3 examines the effects of Cd reduction on TC-

induced sea surface cooling and net energy budget. The

discussion and summary are presented in Section 4.

2 Methods

2.1 Data collection

The position and translation speed of TC were obtained

from the International Best Track Archive for Climate

Stewardship Version 4 for 1982–2020. The statistical data for

subsequent analysis were calculated at 6-hour intervals for TCs

with wind speeds of or greater than 34 kt. In this study, a TC was

defined as being affected by land when the radius of the 34 kt

wind, which is the analysis minimum intensity, reaches the land.

Therefore, the cases in which the TC was within 259 km (the

global mean 34kt wind radius + one s in 2001–2020) of the

coastline were excluded from the analysis. In addition, short-

duration TCs (less than two days) were excluded from the study

to avoid the data heterogeneity caused by improved

observational capacity during the analysis period (Landsea

et al., 2010; Villarini et al., 2011). The present study used

ocean profiles (temperature and salinity) obtained from the

European Centre for Medium-Range Weather Forecasts

(ECMWF) Ocean Reanalysis System 5 monthly data with a

horizontal resolution of 0.25 degrees for the analysis period. The
Frontiers in Marine Science 03
atmospheric profiles used in this study were obtained from the

ECMWF ERA5 monthly data with a horizontal resolution of

0.25 degrees. These environmental profiles were averaged within

a radius of 200 km from the storm center.
2.2 Wind-dependent drag coefficient

The air-sea drag coefficient increases linearly with wind

speed (Large & Pond, 1981; Wu, 1982; Edson et al., 2013),

however, recent studies have shown that Cd saturates (Donelan

et al., 2004; Takagaki et al., 2012; Komori et al., 2018) or

decreases at winds of approximately 30–35 m s−1 (Powell

et al., 2003; Bye & Jenkins, 2006; Jarosz et al., 2007;

Holthuijsen et al., 2012; Soloviev et al., 2014; Zou et al., 2018;

Donelan, 2018; Golbraikh & Shtemler, 2020). Golbraikh and

Shtemler (2020) showed that the two different tendencies of Cd

at high wind speeds are due to the foam layer effect at the air-sea

interface. They suggested that the laboratory-measured sea

surface drag is the result of the foam-free condition and that

sea surface drag would be reduced under TC conditions when

the foam layer effect is taken into account.

Because of limited observation and experimentation, there is

still no consensus on extreme wind speeds greater than 50 m s−1

(Rotunno & Emanuel, 1987; Montgomery et al., 2010; Bell et al.,

2012). However, recent observational and modeling studies have

suggested several possibilities for the behavior of Cd in extreme

winds: increase (Soloviev et al., 2014; Soloviev et al., 2017;

Donelan, 2018), no change (Walsh et al., 2010), or decrease

(Bye & Jenkins, 2006; Kudryavtsev & Makin, 2011; Holthuijsen

et al., 2012). To consider all possibilities for the behavior of Cd in

extreme wind speed, three DR fittings that decrease after 33 m

s−1 but show different trends after 50 m s−1 (increase, IC; flat,

FLT; decrease, DC) were adopted. In addition, the results of

control fittings (Donelan et al., 2004, D04, Figure 2, grey box) in

which Cd is saturated at 33 m s−1 were compared with the results

of DR fittings to investigate the effect of DR.

The exchange of energy in the air-sea interface depends not

only on Cd but also on the transfer of heat through the surface.

The neutral Cdis defined as:

Cd = k 2 ln
10
z0

� �−2

(1)

where k is the von Kármán constant, and z0is the roughness

length for momentum. The neutral exchange coefficient of

enthalpy (Ck) is determined by z0and the roughness length for

enthalpy (zt).

Ck = k 2 ln
10
z0

� �−1

ln
10
zt

� �−1

(2)

Therefore, a change in Cd, a function of z0, leads to a change

in Ck. In this study, Ck was calculated using z0 estimated by Cd
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presented above, and zt was used in the Hurricane WRF v4.0a

(Biswas et al., 2018).
2.3 Depth-averaged temperature

Price (2009) suggested that the DAT is a good metric to

estimate a realistic ocean response by TCs:

DAT   =  
1
d

Z 0

−d
Ti(z)dz (3)

where d is the depth of TC-induced vertical mixing. The

DAT is the vertically averaged temperature from the sea surface

to d, and refers to the SST beneath a TC. An accurate estimation

of d resulting from TC winds is necessary to calculate a realistic

DAT. The bulk Richardson number-based estimation of d, as

proposed by Price (1981), was applied as follows:

g r(z   =  −d) − −1
d

Z −d

0
r(z)dz

� �
d

r0
t4Rh
r0Uh

S
� �2 ≥ 0:6 (4)

t = raCdU
2 (5)
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where r(z) is the density profile, g is the gravitational

acceleration, r0 is the seawater density, ra is the air density, t is
the wind stress, Rh is the maximum wind radius, Uh is TC

translation speed, U is wind speed, and S is the non-dimensional

storm speed (Price et al., 1994). The bottom term in Equation (4)

represents the shear production of turbulence and the top term is

the consumption of turbulence. In this study, the DAT was

calculated by increasing U from 1 to 100 m s−1 at 1 m s−1

intervals for all global observed TC locations. For the estimation

of d, we used the observed Uh, and fixed Rh to 35 km.
2.4 Net energy gain rate and
probability density function of maximum
potential intensity

The NGR, which is the difference between energy generation

(GDAT) by enthalpy flux and frictional dissipation (Dw) by sea

surface drag, represents the energy budget of TC (Lee et al.,

2019). It is indicated by:

GDAT   =  
DAT − To

To
CkraU(k*0 − k)   (6)

Dw   =  CdraU
3   (7)
FIGURE 2

Comparison of drag coefficients (Cd) as a function of wind speed at 10 m height. Parameterizations of Cd shown in the grey box were used in this study.
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NGR   =  GDAT − Dw  

=  
DAT − To

To
CkraU(k*0 − k) − CdraU

3 (8)

where To is the TC outflow temperature, k*0 is the sea

surface saturation enthalpy, and k is the near-surface enthalpy in

the TC environment. The first term in the GDAT is

thermodynamic efficiency, which refers to the ratio of the

enthalpy of convective air being used as the energy source of

the TC. In the calculation of MPI, Emanuel (1995) assumed that

the total energy input of TC is dominated by the contribution

near the maximum wind radius. However, Wang and Xu (2010)

showed that the Dw was about 25% greater than the energy

generation rate (G) near the radius of maximum wind in the

numerically simulated mature TC, while the Dw was lower than

the G outside the eyewall. They also showed that the energy

shortage near the eyewall is relieved by the inflow of energy

produced outside the eyewall. Therefore, for this study we

increased GDAT by 25% to account for the energy input inward

from outside the eyewall. The probability density function (PDF)

of the MPI was estimated based on the cumulative density

function (CDF) as follows.

CDF(v)   =   P GDAT (v) ≤  Dw(v)ð Þ (9)

PDF(v)   =  
dCDF(v)

dv
(10)

The present study calculated the NGR according to the wind

speed at 1 m s−1 intervals at the observed TC locations using the

DAT calculated in the previous section. Based on these results,

the PDF of the MPI was estimated.
3 Results

3.1 The drag coefficient and tropical
cyclone-induced sea surface cooling

The mixing length is strongly influenced by the momentum

flux, which is a function of wind speed and Cd. Therefore, the

increased momentum flux with wind speed leads to deeper

vertical mixing, which results in lower DATs (Figures 3A–C;

blue lines). Conversely, decreasing the Cd reduces the

momentum flux, which weakens vertical mixing. The

difference in the DATs in the DR experiments (IC, FLT, DC)

and the D04 gradually increased with the reduction in the Cd and

was ~0.9 ± 0.5°C at 50 m s−1 (Figures 3A–C; red lines). The DAT

is crucial in determining the GDAT efficiency (the RHS first term

of Equation [6]) and saturation enthalpy at the sea surface. Thus,

a change in the DAT can significantly influence GDAT.
Frontiers in Marine Science 05
3.2 The net energy gain rate and the
distribution of maximum
potential intensity

The comparison of GDAT percentiles (Figures 3D–F) shows

that those in the DR experiments (solid red line and shaded area)

were higher than D04 (black dashed lines) in the DR wind speed

range (DRR). The local increase in DAT, discussed in the

previous section, leads to an increase in thermodynamic

efficiency and k*0 (first and last term in Equation [6]), which

results in an increase in GDAT in DRR.

A comparison of Dw showed that DR experiments are

commonly more minor than D04 in DRR (Figures 3D–F;

thick blue lines). As indicated in previous studies (Soloviev

et al., 2014; Soloviev et al., 2017; Donelan, 2018), DR reduces

frictional dissipation in the boundary layer, thereby contributing

to an increased energy budget.

Local changes of these two parameters in DRR provide extra

energy (i.e., NGR) to the TCs, allowing them to intensify further.

The difference between CDF in DR experiments and that in the

D04 experiment was approximately 0.14 at 50 m s −1

(Figures 3G–I; red lines). This result suggested that 14% of

TCs did not achieve the steady-state in DRR due to the locally

increased NGR. In comparing the PDFs of the estimated MPI

based on the NGR for each experiment, the MPI PDF of the DR

experiments indicated a bimodal distribution (Figures 3G–I;

thick blue lines), whereas the results for the D04 showed

unimodality (Figures 3G–I; dashed blue lines). The first peak

position of the MPI PDF in the DR experiments was 32 m s−1;

the second peak appeared between approximately 54–56 m s−1.

The probability density was 7.7% for the first peak and 5.7%,

5.0%, and 4.1% for the second peak in IC, FLT, and DC,

respectively. Except for the position of the first peak, the

distributions of the simulated MPI in the DR experiments

agree relatively well with observations (first peak; 20.6 m s−1,

8.1%, second peak; 56.6 m s−1, 3.2%, see Figure 1A).

Tang and Emanuel (2010) investigated the effects of vertical

wind shear-induced ventilation on TC intensity. They found that

ventilation decreased the maximum steady-state intensity below

the potential intensity. Using a simple two-layer diagnostic

balance model and regression analysis of observed Atlantic

hurricanes, DeMaria (1996) revealed that intense TCs tend to

be less sensitive to the vertical shear effect. These studies found

that it is difficult for weak TCs to achieve their MPI because of

the influence of wind shear. In contrast, intense TCs are more

strongly vertically coupled, which allows them to achieve the

MPI by resisting the force of the wind shear. This intensity

dependence on wind shear influences may explain the

differences in the first peak position of the MPI PDF and LMI.

Next, we investigated the quantitative contribution of each

term to the increase in NGR. The difference in the mean NGRs
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of the DR and D04 experiments were approximately 0.12 kW

on average in the three experiments at 50 m s−1. The

contributions of Dw and GDAT to the increase in mean NGR

were about 0.09 kW and 0.03 kW, respectively. Previous

studies (Soloviev et al., 2014; Soloviev et al., 2017; Donelan,

2018) did not address the DR effects on SST cooling inhibition

(i.e., contribute to GDAT). However, this effect contributed

about 25% of the increase in NGR, which could reduce the

PDF of MPI in DRR by about 3.3%. This suggests that the

impact of DR on TC-induced mixing makes a significant

contribution to TC intensification.
Frontiers in Marine Science 06
3.3 The rapid intensification and ratio of
achievement of a steady–state

This section examines the observed TC intensification rate in

the DRR. Figure 4A shows the observed 12-hour TC

intensification rate (solid black line and red shaded area) and

the steady-state achievement rate (r steady-state; dashed blue

line). This study defined TC with no intensity change for 18

hours as the steady-state achievement. The r steady-state was

calculated excluding the case of the weakening stage and is

defined as follows:
A B

D E F

G IH

C

FIGURE 3

(A–C) The distribution of the depth-averaged temperature (DAT) and difference between D04 and each experiment: IC (left panels), FTL (center
panels) and DC (right panels). The blue solid line and thick black dashed line indicate mean of DAT for each experiment and D04, respectively. The
red solid line is the mean difference between D04 and each experiment. The shaded areas and black dashed lines indicate ±1s intervals. (D–F) The
distribution of the depth-averaged temperature-based energy generation (GDAT) and frictional dissipation (Dw). The red solid line and thick black
dashed line indicate the median of Gdat for each experiment and D04, respectively. The red shaded areas and black dashed lines indicate
percentiles (25th, 70th, 99th) of Gdat for each experiment and D04, respectively. (G–I) The distribution of the cumulative distribution functions (red
lines) and probability density functions (blue lines) of maximum potential intensity (MPI). The dashed lines represent the results of D04 and solid lines
indicate the results of the three experiments. The probability density function of MPI is smoothed with a window width of 4 m s−1.
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r   Steady − state   =   100� Nno   change   in   18−h

Ntotal − Nweakening
(9)

The average intensification rate in the DRR was 7.2 ± 0.1 m

s−1 per 12 hours and it was statistically significantly higher than

the other ranges by approximately 1.8 m s−1 per 12 hours. RI,

defined as the development of more than 15.4 m s−1 within 24

hours, also had a higher probability of occurrence in the DRR

than in the other ranges (Figure 4B).

The increased NGR may lead to TC intensification, making it

difficult for the TC to achieve a steady-state. The correlation

coefficient for the TC intensification rate and steady-state

probability was −0.78, which indicates statistical significance.

Therefore, the low probability of steady-state in the DRR may

lead to the local minima of LMI distribution and, consequently, the

bimodality of the LMI distribution. The increase in the RI rate in the

DRR may support the findings of previous studies (Lee et al., 2016;

Soloviev et al., 2017) that most of the TCs of the second peak of LMI

distribution (TCs passing through the DRR) experienced RI events.
4 Summary and discussion

The Cd is closely related to TC intensification because it is a

critical factor in the sea surface cooling-related momentum flux

and frictional dissipation. The parameterization of the Cd under

high winds has previously been attempted and many recent

studies suggest that the Cd will decrease with winds greater than

30–35 m s−1. These studies argue that the DR may trigger the RI

of TCs, which might lead to the bimodality of the LMI. However,

the explanations for this mechanism only focused on the
Frontiers in Marine Science 07
frictional dissipation in the boundary layer. In this study, we

analyzed the TC-induced vertical mixing and energy budget

based on realistic wind-dependent Cd to investigate the DR effect

on TC intensification and distribution of the LMI. We then

estimated the PDF of the theoretical maximum intensity based

on these results. Three DR fittings with different slopes at winds

greater than 50 m s−1 were adopted to consider the uncertainty

of the Cd in extreme winds, and the results were compared with

those for the fixed Cd fittings at winds greater than 33 m s−1.

The decrease in Cd reduced frictional dissipation at the air-

sea interface and reduced the momentum flux to the ocean. Due

to this latter effect, the DAT of three DR experiments was

approximately 0.9 ± 0.5°C greater than D04 at 50 m s−1. The

increase in the NGR caused by the reduction in the Cd in the

three DR experiments was ~0.12 kW at 50 m s−1. One-fourth of

this increase was attributed to a decrease in the negative feedback

caused by the weakening of sea surface cooling, with the

remainder due to a reduction in frictional dissipation.

Consequently, this extra energy locally increased the

intensification rate, making it difficult for the TC to achieve a

steady-state. The observations showed that the TC intensification

rate and the probability of RI in the DRR were statistically

significantly higher than in other wind ranges. In contrast, the ratio

of achievementof steady-statewas lower.The intensification rate and

steady-state achievement ratio showed a statistically significant

negative correlation (r = −0.78). These results indicated that the

low steady-state probability in theDRRmay lead to the localminima

of the distribution of LMI, resulting in bimodality (Figure 5).

For a TC to intensify into the major storm (the second mode of

PDF), it must pass through the DRR. This is possible if the TC gains

more energy than is dissipated through the friction (35–50 m s−1;
A B

FIGURE 4

(A) The distribution of the mean intensification rate (solid black line; unit: m s−1 per 12-h) in intensification cases and the probability of the
achievement of a steady-state (dotted blue line). The red shaded area shows the ±1s interval of the intensification rate. The intensification rate
and the achievement of a steady-state are smoothed with a window width of 5.1 m s−1. (B) The probability density function distribution of the
intensified cases (red bars) over 24 hours and rapid intensification cases (blue bars). The blue dashed line indicates the probability of rapid
intensification in the intensification cases. The gray shaded area indicates the reduced drag coefficient wind range. The mean values of each
variable for each wind section are shown at the top or bottom of the figure.
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0.10 kW−0.22 kW) of the DRR. Only TCs placed in a thermal

environment above the top 70th percentile can intensify above 50m

s−1 (Figures 3D, E, F; see 70th percentile). The minimum thermal

environment not trapped in DRR should be at least 4.4 Pa. The

temperature distribution in the ocean with this value was 26.2 ± 0.6°

C and the difference from the pre-storm SST was –1.9 ± 0.8°C.

In this study, the second mode of MPI PDF appeared in all

DR experiments regardless of the Cd tendencies after 50 m s−1.

This contradicts Soloviev’s assertion that the second mode of

LMI results from Cd increasing after reaching its local minimum.

Cd shows a relatively linear relationship with wind speed at

extreme winds; however, frictional dissipation is proportional to

the cube of the wind speed. Therefore, the friction dissipation in

extreme winds is more governed by wind speed than by Cd.

Friction dissipation in extreme winds increases rapidly with

wind speed regardless of the change in Cd, leading to the

weakening of TCs. Thus, Soloviev’s explanation that the TC

weakening due to the increase in Cd at extreme wind speed is the

leading cause of the second mode of LMI can be disputed.

Because of external forcing, most TCs cannot reach their

MPI (Tang & Emanuel, 2010). Consequently, this study’s peak

positions of the estimated PDF of MPI and observed LMI

distribution were slightly different. However, the probability

distribution of TC intensity expands based on the distribution

of the MPI (Emanuel, 2003). The fact that the distribution of

MPI reproduced in this study shows bimodality similar to that of

observation suggests that the distribution of TC intensity might

be primarily governed by the exchange of enthalpy and

momentum at the air-ocean interface. It also indicates that it

is effective to project the distribution of LMI using that of MPI.
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suggest that many factors influence TC intensification in

addition to the Cd reduction. The effects of large-scale

environmental fields, such as the upper-level trough (Hanley

et al., 2001) and vertical wind shear (Merrill, 1988; DeMaria,

1996; Zeng et al., 2007; Bai & Wang, 2016), and internal storm

dynamics, such as the eyewall replacement cycle (Sitkowski et al.,

2011; Kossin & DeMaria, 2016; Fischer et al., 2020), are also

important in understanding the TC intensification process.

These studies enable a better understanding of the role of the

atmospheric side on TC intensification that, in turn, allow for

more accurate TC intensity predictions. However, studies of TC-

induced changes in the air-sea interface, such as sea spray

generation (Andreas & Emanuel, 2001; Andreas, 2010;

Andreas, 2011; Komori et al., 2018) and wave-induced mixing

(Fan et al., 2009; Zhang & Oey, 2019), are still challenging due to

the difficulty and lack of observation under the strong TC

condition. Therefore, continuous observation at the air-sea

interface in strong winds and more research are needed to

improve the understanding of the RI process.
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